Der DAX enthält einige statistische Aggregationsfunktionen, wie zB Durchschnitt, Varianz und Standardabweichung. Andere typische statistische Berechnungen erfordern, dass Sie längere DAX-Ausdrücke schreiben. Excel, von diesem Gesichtspunkt, hat eine viel reichere Sprache. Die statistischen Muster sind eine Sammlung von gemeinsamen statistischen Berechnungen: Median, Modus, gleitenden Durchschnitt, Perzentil und Quartil. Wir danken Colin Banfield, Gerard Brückl und Javier Guilln, deren Blogs einige der folgenden Muster inspiriert haben. Grundmuster Beispiel Die Formeln in diesem Muster sind die Lösungen für spezifische statistische Berechnungen. Mit Hilfe von Standard-DAX-Funktionen kann der Mittelwert (arithmetischer Mittelwert) eines Wertsatzes berechnet werden. DURCHSCHNITT. Gibt den Durchschnitt aller Zahlen in einer numerischen Spalte zurück. AVERAGEA. Gibt den Durchschnitt aller Zahlen in einer Spalte zurück und behandelt sowohl Text als auch nicht-numerische Werte (nicht numerische und leere Textwerte zählen als 0). AVERAGEX. Berechnen Sie den Durchschnitt für einen Ausdruck, der über einer Tabelle ausgewertet wird. Moving Average Der gleitende Durchschnitt ist eine Berechnung, um Datenpunkte zu analysieren, indem eine Reihe von Mittelwerten verschiedener Teilmengen des vollständigen Datensatzes erstellt wird. Sie können viele DAX-Techniken verwenden, um diese Berechnung zu implementieren. Die einfachste Technik besteht darin, AVERAGEX zu verwenden, eine Tabelle der gewünschten Granularität zu iterieren und für jede Iteration den Ausdruck zu berechnen, der den einzelnen Datenpunkt generiert, der im Durchschnitt verwendet werden soll. Die folgende Formel berechnet beispielsweise den gleitenden Durchschnitt der letzten 7 Tage, vorausgesetzt, dass Sie eine Datumstabelle in Ihrem Datenmodell verwenden. Mit AVERAGEX berechnen Sie automatisch das Maß auf jeder Granularität. Bei der Verwendung einer Maßnahme, die aggregiert werden kann (wie z. B. SUM), kann ein anderer Ansatz, der auf CALCULATE basiert, schneller sein. Sie können diesen alternativen Ansatz in der Gesamtheit der Moving Average finden. Sie können Standard-DAX-Funktionen verwenden, um die Varianz eines Wertsatzes zu berechnen. VAR. S. Liefert die Varianz von Werten in einer Spalte, die eine Sample-Population darstellt. VAR. P. Gibt die Varianz von Werten in einer Spalte zurück, die die gesamte Population darstellt. VARX. S. Gibt die Varianz eines Ausdrucks zurück, der über eine Tabelle ausgewertet wird, die eine Sample-Population darstellt. VARX. P. Gibt die Varianz eines Ausdrucks zurück, der über eine Tabelle ausgewertet wird, die die gesamte Population repräsentiert. Standardabweichung Sie können Standard-DAX-Funktionen verwenden, um die Standardabweichung eines Wertsatzes zu berechnen. STDEV. S. Liefert die Standardabweichung von Werten in einer Spalte, die eine Stichprobenpopulation darstellt. STDEV. P. Gibt die Standardabweichung von Werten in einer die gesamte Population repräsentierenden Spalte zurück. STDEVX. S. Gibt die Standardabweichung eines Ausdrucks zurück, der über eine Tabelle ausgewertet wird, die eine Probenpopulation darstellt. STDEVX. P. Gibt die Standardabweichung eines Ausdrucks zurück, der über eine Tabelle ausgewertet wird, die die gesamte Population darstellt. Der Median ist der numerische Wert, der die höhere Hälfte einer Population von der unteren Hälfte trennt. Wenn es eine ungerade Anzahl von Zeilen gibt, ist der Median der Mittelwert (Sortierung der Zeilen vom niedrigsten zum höchsten Wert). Wenn es eine gerade Anzahl von Zeilen gibt, ist dies der Mittelwert der beiden mittleren Werte. Die Formel ignoriert leere Werte, die nicht als Teil der Bevölkerung betrachtet werden. Das Ergebnis ist identisch mit der MEDIAN-Funktion in Excel. Abbildung 1 zeigt einen Vergleich zwischen dem von Excel zurückgegebenen Ergebnis und der entsprechenden DAX-Formel für die mittlere Berechnung. Abbildung 1 Beispiel der Medianberechnung in Excel und DAX. Der Modus ist der Wert, der am häufigsten in einem Satz von Daten angezeigt wird. Die Formel ignoriert leere Werte, die nicht als Teil der Bevölkerung betrachtet werden. Das Ergebnis ist identisch mit den MODE - und MODE. SNGL-Funktionen in Excel, die nur den minimalen Wert zurückgeben, wenn es mehrere Modi in den betrachteten Wertsätzen gibt. Die Excel-Funktion MODE. MULT würde alle Modi zurückgeben, aber Sie können sie nicht als Maßnahme in DAX implementieren. Abbildung 2 vergleicht das Ergebnis, das von Excel mit der entsprechenden DAX-Formel für die Modusberechnung zurückgegeben wird. Abbildung 2 Beispiel für die Modusberechnung in Excel und DAX. Perzentil Das Perzentil ist der Wert, unter dem ein bestimmter Prozentsatz der Werte in einer Gruppe sinkt. Die Formel ignoriert leere Werte, die nicht als Teil der Bevölkerung betrachtet werden. Die Berechnung in DAX erfordert mehrere Schritte, die im Abschnitt Vollständiges Muster beschrieben werden und zeigt, wie die gleichen Ergebnisse der Excel-Funktionen PERCENTILE, PERCENTILE. INC und PERCENTILE. EXC zu erhalten sind. Die Quartile sind drei Punkte, die einen Satz von Werten in vier gleiche Gruppen unterteilen, wobei jede Gruppe ein Viertel der Daten umfasst. Sie können die Quartile mit dem Percentile-Muster nach diesen Korrespondenzen berechnen: Erstes Quartil-Unterquartil 25. Perzentil Zweites Quartil-Median 50. Perzentil Drittes Quartil-Oberquartil 75. Perzentil Komplettes Muster Einige statistische Berechnungen haben eine längere Beschreibung des gesamten Musters, da Haben Sie möglicherweise verschiedene Implementierungen abhängig von Datenmodellen und anderen Anforderungen. Gleitender Durchschnitt Normalerweise werten Sie den gleitenden Durchschnitt aus, indem Sie auf den Taggranularitätsgrad verweisen. Die allgemeine Vorlage der folgenden Formel hat diese Marker: ltnumberofdaysgt ist die Anzahl der Tage für den gleitenden Durchschnitt. Ltdatecolumngt ist die Datumspalte der Datumstabelle, wenn Sie eine oder die Datumspalte der Tabelle mit Werten haben, wenn keine separate Datumstabelle vorhanden ist. Ltmeasuregt ist die zu berechnende Größe als gleitender Durchschnitt. Das einfachste Muster verwendet die Funktion AVERAGEX in DAX, die automatisch nur die Tage berücksichtigt, für die es einen Wert gibt. Alternativ können Sie die folgende Vorlage in Datenmodellen ohne Datumstabelle und mit einer aggregierten Maßnahme (wie zB SUM) über den gesamten betrachteten Zeitraum verwenden. Die vorhergehende Formel berücksichtigt einen Tag ohne entsprechende Daten als Maß, das 0-Wert hat. Dies kann nur geschehen, wenn Sie eine separate Datumstabelle haben, die Tage enthalten kann, für die es keine entsprechenden Transaktionen gibt. Sie können den Nenner für den Durchschnitt nur über die Anzahl der Tage, für die es Transaktionen mit dem folgenden Muster gibt, festlegen: ltfacttablegt ist die Tabelle, die mit der Datumstabelle verknüpft ist und die von der Maßeinheit berechneten Werte enthält. Sie können die DATESBETWEEN - oder DATESINPERIOD-Funktionen anstelle von FILTER verwenden, aber diese arbeiten nur in einer regulären Datumstabelle, während Sie das oben beschriebene Muster auch auf nicht-reguläre Datumstabellen und auf Modelle anwenden können, die keine Datumstabelle haben. Betrachten Sie zum Beispiel die verschiedenen Ergebnisse, die durch die beiden folgenden Maßnahmen hervorgerufen werden. In Abbildung 3 sehen Sie, dass es keine Verkäufe am 11. September 2005 gibt. Allerdings ist dieses Datum in der Tabelle Datum enthalten, also gibt es 7 Tage (vom 11. September bis 17. September), die nur 6 Tage mit Daten haben. Abbildung 3 Beispiel einer gleitenden Durchschnittsberechnung unter Berücksichtigung und Ignorierung von Terminen ohne Umsatz. Die Maßnahme Moving Average 7 Tage hat eine niedrigere Zahl zwischen dem 11. September und 17. September, weil es berücksichtigt 11. September als Tag mit 0 Verkäufe. Wenn Sie Tage ohne Umsatz ignorieren möchten, dann verwenden Sie die Maßnahme Durchschnittliche 7 Tage Keine Zero. Dies könnte der richtige Ansatz sein, wenn Sie eine vollständige Datumstabelle haben, aber Sie Tage ohne Transaktionen ignorieren möchten. Mit dem Moving Average 7 Tage Formel ist das Ergebnis korrekt, da AVERAGEX automatisch nur Leerwerte berücksichtigt. Beachten Sie, dass Sie die Leistung eines gleitenden Durchschnitts verbessern können, indem Sie den Wert in einer berechneten Spalte einer Tabelle mit der gewünschten Granularität wie Datum, Datum und Produkt beibehalten. Der dynamische Berechnungsansatz mit einer Maßnahme bietet jedoch die Möglichkeit, einen Parameter für die Anzahl von Tagen des gleitenden Mittelwerts zu verwenden (z. B. ersetzen Sie die Anzahl von Tagen mit einem Maß, das das Parametertabellenmuster implementiert). Der Median entspricht dem 50. Perzentil, das Sie mit dem Perzentilmuster berechnen können. Das Medianmuster ermöglicht es Ihnen, die Medianberechnung mit einem einzigen Maßstab zu optimieren und zu vereinfachen, anstelle der verschiedenen Maßnahmen, die das Perzentilmuster erfordert. Sie können diesen Ansatz verwenden, wenn Sie den Median für die in ltvaluecolumngt enthaltenen Werte berechnen, wie unten gezeigt: Um die Leistung zu verbessern, möchten Sie möglicherweise den Wert einer Kennzahl in einer berechneten Spalte beibehalten, wenn Sie den Median für die Ergebnisse von erhalten möchten Eine Maßnahme im Datenmodell. Bevor Sie diese Optimierung durchführen, sollten Sie die MedianX-Berechnung anhand der folgenden Vorlage mit diesen Markern implementieren: ltgranularitytablegt ist die Tabelle, die die Granularität der Berechnung definiert. Beispielsweise könnte es sich um die Datumstabelle handeln, wenn Sie den Mittelwert einer auf Tagesebene berechneten Maßnahme berechnen wollen, oder es könnte VALUES (8216DateYearMonth) sein, wenn Sie den Median einer auf der Monatsstufe berechneten Maßeinheit berechnen möchten. Ltmeasuregt ist das Maß für die Berechnung für jede Zeile der ltgranularitytablegt für die mittlere Berechnung. Ltmeasuretablegt ist die Tabelle, die die von ltmeasuregt verwendeten Daten enthält. Wenn z. B. das ltgranularitytablegt eine Dimension wie 8216Date8217 ist, wird das ltmeasuretablegt 8216Internet Sales8217 sein, das die Internet Sales Amount-Spalte enthält, die durch das Internet-Gesamtumsatzmaß summiert wird. Beispielsweise können Sie den Median des Gesamtverkaufs für alle Kunden in Adventure Works wie folgt schreiben: Tip Das folgende Muster: wird verwendet, um Zeilen aus ltgranularitytablegt zu entfernen, die keine entsprechenden Daten in der aktuellen Auswahl haben. Es ist ein schnellerer Weg, als den folgenden Ausdruck zu verwenden: Sie können jedoch den gesamten CALCULATETABLE-Ausdruck durch nur ltgranularitytablegt ersetzen, wenn Sie leere Werte des ltmeasuregt als 0 betrachten möchten. Die Performance der MedianX-Formel hängt von der Anzahl der Zeilen in der Tabelle ab Und die Komplexität der Maßnahme. Wenn die Leistung schlecht ist, können Sie das ltmeasuregt-Ergebnis in einer berechneten Spalte des lttablegt fortbestehen, aber dies wird die Fähigkeit des Anwendens von Filtern auf die mittlere Berechnung bei der Abfragezeit beeinträchtigen. Perzentile Excel hat zwei verschiedene Implementierungen der Perzentilberechnung mit drei Funktionen: PERCENTILE, PERCENTILE. INC und PERCENTILE. EXC. Sie geben alle das K-te Perzentil der Werte zurück, wobei K im Bereich von 0 bis 1 liegt. Der Unterschied besteht darin, daß PERCENTILE und PERCENTILE. INC K als einen Inklusionsbereich betrachten, während PERCENTILE. EXC den K-Bereich 0 bis 1 als exklusiv betrachtet . Alle diese Funktionen und ihre DAX-Implementierungen erhalten einen Perzentilwert als Parameter, den wir K. ltKgt-Perzentilwert im Bereich von 0 bis 1 nennen. Die beiden DAX-Implementierungen von Perzentil erfordern ein paar ähnliche Maßnahmen, die aber unterschiedlich genug sind Zwei verschiedene Satz von Formeln. Die in jedem Muster definierten Maßnahmen sind: KPerc. Der Perzentilwert entspricht ltKgt. PercPos. Die Position des Perzentils im sortierten Satz von Werten. ValueLow. Der Wert unterhalb der Perzentilposition. WertHigh. Der Wert über der Perzentilposition. Perzentil. Die endgültige Berechnung des Perzentils. Sie benötigen die ValueLow - und ValueHigh-Maßnahmen, falls das PercPos einen Dezimalteil enthält, da Sie dann zwischen ValueLow und ValueHigh interpolieren müssen, um den richtigen Perzentilwert zurückzugeben. Fig. 4 zeigt ein Beispiel der Berechnungen, die mit Excel - und DAX-Formeln durchgeführt werden, wobei beide Algorithmen von Perzentil (inklusive und exklusiv) verwendet werden. Abbildung 4 Perzentilberechnungen mit Excel-Formeln und der äquivalenten DAX-Berechnung. In den folgenden Abschnitten führen die Percentile-Formeln die Berechnung von Werten aus, die in einer Tabellenspalte DataValue gespeichert sind, während die PercentileX-Formeln die Berechnung auf Werte ausführen, die durch eine bei einer gegebenen Granularität berechnete Kennzahl zurückgegeben werden. Percentile Inclusive Die Percentile Inclusive-Implementierung ist die folgende. Percentile Exclusive Die Percentile Exclusive-Implementierung ist die folgende. PercentileX Inclusive Die PercentileX Inclusive-Implementierung basiert auf folgender Vorlage: ltgranularitytablegt ist die Tabelle, die die Granularität der Berechnung definiert. Beispielsweise könnte es sich um die Datumstabelle handeln, wenn Sie das Perzentil einer Kennzahl auf Tagesebene berechnen möchten, oder es könnte VALUES (8216DateYearMonth) sein, wenn Sie das Perzentil einer Kennzahl auf der Monatsstufe berechnen möchten. Ltmeasuregt ist das Maß für die Berechnung für jede Zeile von ltgranularitytablegt für die Perzentilberechnung. Ltmeasuretablegt ist die Tabelle, die die von ltmeasuregt verwendeten Daten enthält. Wenn zum Beispiel das ltgranularitytablegt eine Dimension wie 8216Date, 8217 ist, dann ist das ltmeasuretablegt 8216Sales8217, das die Summenspalte enthält, die durch das Gesamtbetragsmaß summiert wird. Beispielsweise können Sie den PercentileXInc des Gesamtbetrags von Verkäufen für alle Daten in der Datumstabelle wie folgt schreiben: PercentileX Exclusive Die PercentileX Exclusive-Implementierung basiert auf der folgenden Vorlage, wobei dieselben Markierungen verwendet werden, die in PercentileX Inclusive verwendet werden: Zum Beispiel Sie Kann die PercentileXExc des Gesamtbetrags der Verkäufe für alle Daten in der Datumstabelle wie folgt schreiben: Halten Sie mich über bevorstehende Muster (Newsletter) auf dem Laufenden. Deaktivieren Sie die Datei frei herunterladen. Published on March 17, 2014 byMoving durchschnittliche und exponentielle Glättungsmodelle Als ein erster Schritt, über jenseits der Mittel-Modelle, zufällige gehen Modelle und lineare Trend-Modelle, nicht saisonale Muster und Trends können mit einem gleitenden Durchschnitt oder Glättung Modell extrapoliert werden. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird auf den Zeitraum t (m1) 2 zentriert, was impliziert, daß die Schätzung des lokalen Mittels dazu neigt, hinter dem wahr zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. Somit ist das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu der Periode, für die die Prognose berechnet wird, angegeben: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten der Daten zu liegen . Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Fußmodell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige Fußmodell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt er viel von der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Abschwung in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst nach mehreren Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-Term einfach gleitenden Durchschnitt versuchen, erhalten wir sogar noch bessere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-term gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. 945 bezeichnen eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Serie L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell entspricht einem zufälligen Weg-Modell (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang.) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1 945, bezogen auf den Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1 945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättung (SES) - Prognose der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das durchschnittliche Alter der Daten in dieser Prognose beträgt 10.2961 3,4 Perioden, was ähnlich wie bei einem 6-term einfachen gleitenden Durchschnitt ist. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird ein ARIMA-Modell mit einer nicht sonderbaren Differenz und einem MA (1) - Term mit konstantem, d. H. Einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als Neigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmus-Transformation angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keinen Trend gibt (was in der Regel in Ordnung ist oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, so würde dies die Prognose für Y in der Periode t1 sein.) Dann sei Squot die doppelt geglättete Folge, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit und die erste Prognose der tatsächlichen ersten Beobachtung gleich) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineares Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die es anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstanten 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, da Fehler in der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, erweisen sich die Schätzungen als 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. Analog zur Vorstellung des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Reihe verwendet werden, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1 946, wenn auch nicht exakt gleich . In diesem Fall erweist sich dies als 10.006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, sondern sie ist von der gleichen Größenordnung wie die Stichprobengröße von 100 Dieses Modell ist Mittelung über eine ziemlich große Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde zu legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten erwartet werden könnte, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Zurück zum Seitenanfang.)
No comments:
Post a Comment